
Math 31 – Homework 4 Solutions

1. Determine whether each of the following subsets is a subgroup of the given group. If not, state
which of the subgroup axioms fails.

(a) The set of real numbers R, viewed as a subset of the complex numbers C (under addition).

(b) The set πQ of rational multiples of π, as a subset of R (under addition).

(c) The set of n× n matrices with determinant 2, as a subset of GLn(R).

(d) The set {i,m1,m2,m3} ⊂ D3 of reflections of the equilateral triangle, along with the identity
transformation.

Solution. (a) Yes, R is a subgroup of C. The sum of any two real numbers is real, 0 ∈ R, and if
a ∈ R, then −a ∈ R.

(b) Yes, πQ is a subgroup of R under addition. The verification is almost identical to the
argument that we gave in class to show that Q is a subgroup of R.

(c) No, this set is not a subgroup of GLn(R), since it is not closed. If A and B both have
determinant 2, then det(AB) = 4, so AB ∈ GLn(R). It is also easy to see that this set does not
contain the identity matrix, and that none of its elements possess inverses within the set.

(d) No, this is not a subgroup of D3. It contains the identity by definition, and each element is
its own inverse, but the set is not closed. For example, we saw that m1m2 = r1.

2. We proved in class that every subgroup of a cyclic group is cyclic. The following statement is
almost the converse of this:

“Let G be a group. If every proper subgroup of G is cyclic, then G is cyclic.”

Find a counterexample to the above statement.

Proof. We actually mentioned in class that the Klein 4-group, V4, is a counterexample. All of its
proper subgroups are cyclic, but V4 is not itself cyclic. Another example would be the dihedral
group D3. Every proper subgroup has order 1, 2, or 3, and is thus cyclic. However, D3 is not cyclic.
(It is not even abelian.)

3. [Saracino, #5.10] Prove that any subgroup of an abelian group is abelian.

Proof. Let G be an abelian group, and suppose that H ≤ G. We need to check that for any
a, b ∈ H, we have ab = ba. Well, a, b ∈ H ⊆ G, so

ab = ba,

since G is abelian. Therefore, H is abelian as well.
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4. [Saracino, #5.14] Let G be a group. If H and K are subgroups of G, show that H ∩K is also
a subgroup of G.

Proof. Suppose that a, b ∈ H ∩ K. Then a, b ∈ H, so ab ∈ H since H is a subgroup. Similarly,
a, b ∈ K, so ab ∈ K. Then ab ∈ H ∩K, so H ∩K is closed. Since H and K are both subgroups,
e ∈ H and e ∈ K, hence e ∈ H ∩ K. Finally, if a ∈ H ∩ K, then a−1 ∈ H and a−1 ∈ K, so
a−1 ∈ H ∩K. Therefore, H ∩K ≤ G.

Alternatively, we could use the subgroup criterion that we proved in class. Suppose that a, b ∈
H ∩K. Then ab−1 ∈ H and ab−1 ∈ K, since H and K are both subgroups, so ab−1 ∈ H ∩K. Since
a and b are arbitrary elements of H ∩K, it follows that H ∩K ≤ G by the subgroup criterion.

5. Let r and s be positive integers, and define

H = {nr +ms : n,m ∈ Z} .

(a) Show that H is a subgroup of Z.

(b) We saw in class that every subgroup of Z is cyclic. Therefore, H = 〈d〉 for some d ∈ Z. What
is this integer d? Prove that the d you’ve found is in fact a generator for H.

Proof. (a) We can verify directly that H ≤ Z. If nr +ms, nt+mu ∈ H, then

(nr +ms) + (nt+mu) = n(r + t) +m(s+ u),

which is again in H. Thus H is closed. Also, 0 = n · 0 +m · 0 ∈ H, and if nr +ms ∈ H, then

−(nr +ms) = n(−r) +m(−s) ∈ H,

so H is indeed a subgroup of Z.
(b) We claim that H is generated by d = gcd(n,m). To prove this, we need to check that

H = 〈d〉. First, note that since d | n and d | m, d | nr +ms for any r, s ∈ Z. That is, any element
of H is a multiple of d, so

H ⊂ 〈d〉 = dZ.

We also need to check that dZ ⊂ H, and it is enough to show that d ∈ H. (Remember that
any subgroup containing d must also contain the cyclic subgroup that it generates.) For this, we
just need to remember Bézout’s lemma/Extended Euclidean algorithm, which says that there are
integers x, y ∈ Z such that

nx+my = gcd(n,m) = d.

Therefore, d ∈ H, so H = dZ.

6. Let X be a set, and recall that SX is the group consisting of the bijections from S to itself,
with the binary operation given by composition of functions. (If X is finite, then SX is just the
symmetric group on n letters, where X has n elements.) Given x1 ∈ X, define

H = {f ∈ SX : f(x1) = x1} .

Show that H ≤ SX .
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Proof. First note that the identity function i ∈ SX belongs to H, since i(x) = x for all x ∈ X.
Also, if f, g ∈ H, then

f ◦ g(x1) = f(g(x1)) = f(x1) = x1,

since f and g both fix x1. Therefore, f ◦ g ∈ H, so H is closed under composition. Finally, if
f ∈ SX , then

f−1(x1) = f−1(f(x1)) = i(x1) = x1,

since f(x1) = x1. Therefore, f−1 ∈ H, and H is a subgroup of SX . (This subgroup is called the
stabilizer of x1.)

7. [Saracino, #5.22] Let G be a group. Define

Z(G) = {a ∈ G : ax = xa for all x ∈ G} .

In other words, the elements of Z(G) are exactly those which commute with every element of G.
Prove that Z(G) is a subgroup of G, called the center of G.

Proof. Suppose that a, b ∈ Z(G). Then ax = xa and bx = xb for all x ∈ G, and for any x ∈ G we
have

(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab),

so ab ∈ Z(G). Therefore, Z(G) is closed. Also, we certainly have ex = xe = x for all x ∈ G, so
e ∈ Z(G). Finally, if a ∈ Z(G), then

a−1x = ((a−1x)−1)−1 = (x−1a)−1 = (ax−1)−1,

since a commutes with every element of G. Continuing, we have

(ax−1)−1 = xa−1,

so a−1x = xa−1, and a−1 ∈ Z(G). Therefore, Z(G) is a subgroup of G.

8. Show that if H and K are subgroups of an abelian group G, then

{hk : h ∈ H and k ∈ K}

is a subgroup of G.

Proof. Define
HK = {hk : h ∈ H and k ∈ K} .

Let a, b ∈ HK. Then a = h1k1 and b = h2k2 for some h1, h2 ∈ H and k1, k2 ∈ K. Now we have

ab = (h1k1)(h2k2) = h1(k1h2)k2 = h1(h2k1)k2 = (h1h2)(k1k2),

where we have used the fact that G is abelian to interchange h2 and k1. Since H ≤ G, h1h2 ∈ H,
and similarly, k1k2 ∈ K, so ab ∈ HK. Therefore, HK is closed. Since H and K are both subgroups
of G, e ∈ H and e ∈ K, so e = ee ∈ HK. Finally, suppose that a = hk ∈ HK. Then

a−1 = (hk)−1 = k−1h−1 = h−1k−1,

again since G is abelian. Since h−1 ∈ H and k−1 ∈ K, a−1 ∈ HK. Therefore, HK ≤ G.
Note that the fact that G is abelian is crucial here. The result is not true in general for

nonabelian groups.
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9. [Saracino, #5.20] We will see in class that if p is a prime number, then the cyclic group Zp

has no proper subgroups as a consequence of Lagrange’s theorem. This problem will have you
investigate a “converse” to this result.

(a) If G is a finite group which has no proper subgroups (other than {e}), prove that G must be
cyclic.

(b) Extend the result of (a) by showing that if G has no proper subgroups, then G is not only
cyclic, but

|G| = p

for some prime number p.

Proof. (a) Suppose that G has no proper subgroups. If G = {e}, then G is cyclic, so let’s assume
that G contains more than one element. Let a ∈ G with a 6= e. Then |a| > 1, and a generates
a subgroup 〈a〉 of G with order greater than 1. But G contains no proper subgroups, so we must
have 〈a〉 = G. That is, a generates G, and G is cyclic.

(b) We have already established that G is cyclic, so we simply need to prove that G has prime
order. We saw in class that the subgroups of any finite cyclic group correspond exactly to the
divisors of |G|. Since G has no proper subgroups other than e, |G| cannot have any proper divisors.
In other words, |G| is prime.

Hard

10. [Saracino, #5.25 and 5.26] Let G be a group, and let H be a subgroup of G.

(a) Let a be some fixed element of G, and define

aHa−1 = {aha−1 : h ∈ H}.

This set is called the conjugate of H by a. Prove that aHa−1 is a subgroup of G.

(b) Define the normalizer of H in G to be

N(H) = {a ∈ G : aHa−1 = H}.

Prove that N(H) is a subgroup of G.

Proof. To prove (a), we’ll use the subgroup criterion. Let x, y ∈ aHa−1. We will show that
xy−1 ∈ aHa−1. We have x = ah1a

−1 and y = ah2a
−1 for some h1, h2 ∈ H, so

xy−1 = (ah1a
−1)(ah2a

−1) = a(h1h2)a
−1.

Since H is a subgroup, h1h2 ∈ H, and it follows that ah1h2a
−1 ∈ aHa−1. That is, xy−1 ∈ aHa−1,

so aHa−1 is a subgroup of G.
(b) Clearly the identity element of G belongs to N(H), since

eHe−1 = {ehe−1 : h ∈ H} = {h : h ∈ H} = H.

Now let a ∈ N(H). We will show that a−1 ∈ N(H) as well. First observe that if h ∈ H, then we
can write

h = aka−1
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for some k ∈ H, since aHa−1 = H. Then

a−1ha = a−1(aka−1)a = k,

which belongs to H. Therefore, a−1Ha ⊆ H. On the other hand, suppose that h ∈ H. Then we
have

h = (a−1a)h(a−1a) = a−1(aha−1)a.

But aha−1 ∈ H, so it follows that h ∈ a−1Ha. Thus H ⊆ a−1Ha, so a−1 ∈ N(H).
Finally, suppose that a, b ∈ N(H), so aHa−1 = H and bHb−1 = H. Then for any h ∈ H, we

have
(ab)h(ab)−1 = abhb−1a−1 = a(bhb−1)a−1.

Since b ∈ N(H), bhb−1 ∈ H. Moreover, a ∈ N(H), so a(bhb−1)a−1 ∈ H. Therefore, (ab)H(ab)−1 ⊆
H. On the other hand, we need to show that H ⊆ (ab)H(ab)−1 as well. Well, if h ∈ H, then
h = ak1a

−1 for some k ∈ H, since aHa−1 = H. Similarly, we can write k1 = bk2b
−1 for some

k2 ∈ H, since b ∈ N(H). Therefore,

h = ak1a
−1 = a(bk2b

−1)a−1 = (ab)k2(ab)
−1,

so h ∈ (ab)H(ab)−1. Thus H ⊆ (ab)H(ab)−1, and ab ∈ N(H). It follows that N(H) ≤ G.
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